Одной из самых известных неэлементарных функций, которая применяется в математике, в теории дифференциальных уравнений, в статистике и в теории вероятностей является функция Лапласа. Решение задач с ней требует существенной подготовки. Давайте выясним, как можно с помощью инструментов Excel произвести вычисление данного показателя.
Функция Лапласа
Функция Лапласа имеет широкое прикладное и теоретическое применение. Например, она довольно часто используется для решения дифференциальных уравнений. У этого термина существует ещё одно равнозначное название – интеграл вероятности. В некоторых случаях основой для решения является построение таблицы значений.
Оператор НОРМ.СТ.РАСП
В Экселе указанная задача решается с помощью оператора . Его название является сокращением от термина «нормальное стандартное распределение». Так как его главной задачей является возврат в выделенную ячейку стандартного нормального интегрального распределения. Данный оператор относится к статистической категории стандартных функций Excel.
В Excel 2007 и в более ранних версиях программы этот оператор назывался . Он в целях совместимости оставлен и в современных версиях приложений. Но все-таки в них рекомендуется использование более продвинутого аналога – .
Синтаксис оператора выглядит следующим образом:
=НОРМ.СТ.РАСП(z;интегральная)
Устаревший оператор записывается так:
=НОРМСТРАСП(z)
Как видим, в новом варианте к существующему аргументу добавлен аргумент . Нужно заметить, что каждый аргумент является обязательным.
Аргумент указывает числовое значение, для которого производится построение распределения.
Аргумент представляет собой логическое значение, которое может иметь представление или . В первом случае в указанную ячейку возвращается интегральная функция распределения, а во втором – весовая функция распределения.
Решение задачи
Для того чтобы выполнить требуемое вычисление для переменной применяется следующая формула:
=НОРМ.СТ.РАСП(z;интегральная(1))-0,5
Теперь давайте на конкретном примере рассмотрим использование оператора для решения конкретной задачи.
- Выделяем ячейку, куда будет выводиться готовый результат и щелкаем по значку , расположенному около строки формул.
- После открытия переходим в категорию или . Выделяем наименование и жмем на кнопку .
- Происходит активация окна аргументов оператора . В поле вводим переменную, к которой нужно произвести расчет. Также этот аргумент может быть представлен в виде ссылки на ячейку, которая содержит эту переменную. В поле » вводим значение . Это означает, что оператор после вычисления вернет в качестве решения интегральную функцию распределения. После того, как выполнены вышеперечисленные действия, жмем на кнопку .
- После этого результат обработки данных оператором будет выведен в ячейку, которая указана в первом пункте данного руководства.
- Но и это ещё не все. Мы вычислили только стандартное нормальное интегральное распределение. Для того, чтобы посчитать значение функции Лапласа, нужно от него отнять число . Выделяем ячейку, содержащую выражение. В строке формул после оператора дописываем значение: .
- Для того, чтобы произвести вычисление, жмем на кнопку . Полученный результат и будет искомым значением.
Как видим, вычислить функцию Лапласа для конкретного заданного числового значения в программе Excel не составляет особенного труда. Для этих целей применяется стандартный оператор .
Мы рады, что смогли помочь Вам в решении проблемы.
Помимо этой статьи, на сайте еще 13048 полезных инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам. Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.